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The spherical model of a ferromagnet is investigated in the framework of the 
generalized quasiaverage approach where an external field positive in one half 
of a square lattice and negative in the other half is used. It is shown that in 
addition to the well-known critical point, a second one can be produced by the 
field. Although the main asymptotic of the free energy is analytic at this point, 
the next-to-leading asymptotic possesses a singularity here, as well as at the 
point where the free energy per site is nonanalytic. An order parameter of the 
model also has singularities at both critical points. The magnetization profile is 
studied at different scales. It is shown that (in an appropriate regime), below the 
new critical temperature the magnetization profile freezes, that is, becomes 
temperature independent. 

KEY WORDS: Spherical model; magnetization profile; Gibbs states; phase 
transition. 

1. I N T R O D U C T I O N  

The spherical  mode l  of a fe r romagnet  in t roduced  by  Berlin and K a c  ~8) is 
definitely one of the mos t  s tudied models  of s tat is t ical  mechanics.  As soon 
as a ques t ion arouses  interest  a m o n g  those  who s tudy the proper t ies  of 
fer romagnets ,  inevi tably  the spherical  mode l  is used to shed some light on 
the problem.  F o r  example ,  phase  separa t ion  in the spherical  model  was 
s tudied by A b r a h a m  and  Rober t  (2'3) fol lowing much  act ivi ty  on the 
phase  separa t ion  in the Ising mode l  (see, e.g., refs. 12, 13, 23, and  1); the 
spher ical  mode l  in an  external  r a n d o m  field was s tudied by Pas tu r  (22) after 
several  interest ing p h e n o m e n a  were d iscovered by Imry  and M a  (18) for 
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ferromagnets in an external random field. Effects of finite size, restricted 
dimensionality, and surfaces on the critical behavior of the spherical model 
were studied by Barber and Fisher (6i after similar analysis of the Ising 
model. (16) Gibbs states of the spherical model were studied by Molchanov 
and Sudarev (21) after an extensive study of this subject in many models of 
statistical mechanics by different authors (see, e.g., the book of Georgii (17) 
and references therein). 

However, in spite of much detailed investigation of the spherical 
model, dark areas still exist. For instance, the influence of boundary 
conditions on the properties of the model has received little study. As a 
consequence, the structure of the set of the limit Gibbs states for the model 
is not completely clear, and the shape of the magnetization profile for the 
model with general boundary conditions is unknown (see, however, ref. 3). 

The purpose of the present paper is an investigation of the distribution 
of the individual spin variables of the model and some macroscopic 
variables in the framework of the generalized quasiaverage approach. (4' 11) 
The quasiaverage approach can be useful, for example, for singling out 
different limiting Gibbs states and, as a consequence, for studying such 
properties as the existence of spontaneous magnetization and spontaneous 
symmetry breaking. In the conventional form (9) its prescription is loosely 
as follows: switch on an appropriate external field, calculate values of 
variables of interest in the thermodynamic limit, and switch off the external 
field. Usually the conveptional quasiaverage approach is a rather rough 
method only allowing one to single out pure Gibbs states. The generalized 
quasiaverage approach (4' 14) has been proposed as a more flexible instru- 
ment allowing one to single out not only pure Gibbs states, but also their 
mixtures. The prescription of the generalized quasiaverage approach is as 
follows: switch on an appropriate external field whose magnitude h (N) tends 
to zero when the size of the system tends to infinity (e.g., h (u)=hN -p, 
p > 0) and calculate the variables of interest in the thermodynamic limit. 
The distinctive feature of the generalized quasiaverage approach is that 
switching off the external field happens not after the thermodynamic limit, 
but together with this limit. Although the relation between the generalized 
quasiaverage approach and the true instruments for singling out different 
Gibbs states (e.g., passing to the thermodynamic limit using different 
boundary conditions (2~ is not completely clear, there is a hope that the 
quasiaverage approach in its generalized form can model boundary condi- 
tions pretty well and hence can be quite useful, since the study of the 
influence of the boundary conditions may be (and usually is) very difficult. 

At first sight it could seem that the presence of an external field whose 
magnitude depends on the size of the system makes the model very artifi- 
cial and unphysical. However, many physical interpretations of such a field 
are possible. For instance, 'suppose that an experimentalist has measured 
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the magnetization profile created by a very weak external field (so weak 
that the interparticle correlations are significant) in a ferromagnet sample 
of the "size" L. For an infinitely large sample an arbitrarily small external 
field reduces drastically interparticle correlations. Hence, one can expect 
that the profile produced by a field of the same magnitude but in a sample 
of "size" 2L will be significantly different. Thus, the following question 
arises: how should one change the magnitude of the field in order to obtain 
the same profile? The generalized quasiaverage approach produces the 
answer to such questions as one of its byproducts. 

One might say that in part of their paper Abraham and Robert (3~ 
made use of the (conventional) quasiaverage approach, indeed, they 
switched on an inhomogeneous external field positive in one half of a cubic 
lattice and negative in the other, calculated the shape of the magnetization 
profile, and then demonstrated that the width of the intermediate region 
between plus and minus phases tends to infinity when the external field is 
switched off (i.e., they found the shape of the magnetization profile in the 
microscopic scale, which is trivial in that case, after switching off the 
external field). We would like to use the generalized quasiaverage approach 
instead and to study the magnetization profile on a variety of scales. It 
turns out that some new phenomena arise for the spherical models in the 
framework of this approach, in particular, there appears a critical tem- 
perature below which the shape of the magnetization profile freezes, that is, 
no longer depends on the temperature. Moreover, order parameters of the 
model have a singularity at that point, although the free energy does not. 

A particular form of the generalized quasiaverage approach has been 
used by Brankov and Danchev (1~ to study the set of the limit Gibbs states 
(they used a homogeneous external field with the amplitude vanishing in 
the thermodynamic limit). They were able to single out not only pure " + "  
and " - "  ferromagnetic limit Gibbs phases, but also their mixtures. In the 
present paper we will show that using an inhomogeneous external field, one 
can obtain distributions of the single spin variables different from those 
obtained in ref. 10, and hence there should exist limit Gibbs states different 
from those obtained in that paper. 

The outline of this paper is as follows: In Section 2 the definition of 
the model and some preliminary results are presented. Section 3 is devoted 
to the study of the correction to the free energy induced by an external 
field. There we obtain an explicit expression for the next-to-leading asymp- 
totic of the free energy (surface tension). The shape of the magnetization 
profile is studied in Section 4, where explicit expressions for the magneti- 
zation profiles are derived in different regimes. In Sections 5 and 6 the 
distributions of single spin variables and some thermodynamic observables 
are analyzed. Section 7 is devoted to a discussion of the results of the 
previous sections. 
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2. DEF IN IT ION OF THE M O D E L  A N D  P R E L I M I N A R Y  RESULTS 

S N Consider a sequence of real-valued random variables { j}j=l (a 
configuration of spins) placed at the sites of a regular square lattice 

V={( j l , j2 , . . . , ja )EZa: j l=l ,  2,. . . ,nl;l=l,  2 ..... d}, [V[=N=nxn2. . .n  a 

according to the rule 

Sj~-~ (Jl, J2,'", Ja): 
d l 1 

J=  Jl -[- E (Jl--1)  U r/k 
/=2 k = l  

As usual, the Hamiltonian of the spherical model is a function on the space 
of spin configurations R N, and is given by the formula 

N 
H(SI'~S2;...;SN)= --2J ~ sis~-- ~ h~N)sj (2.1) 

( i;j) j = l  

where the summation Z<~;j> runs over all pairs of nearest neighbors (on the 
lattice V). We impose the (Berlin-Kac) periodic boundary conditions, (8) 
that is, we suppose that SN+k = Sk, k = 1, 2 ..... N, and pairs of spins 

(Si' S i + l ) ;  (Si' Si+nl); (Si, Si+nln2);"'; (Si, Si+nln2 .... d l) 

are pairs of nearest neighbors for any i =  1, 2 ..... N. The joint probability 
S N distribution of the random variables { J}i=1 (the Gibbs distribution) is 

defined by the density 

p(sl ; s2 ;...; S N )  = e -flH(sl;s2;''';sN) (2.2) 

with respect to the a priori measure a(ZN=,s2--N) yIN=ldS j on 
(RN;~(RN)) [here [I7=ldSj is the ordinary Lebesgue measure on 
(RN; M(RN)) and 6(.) is the delta function]. The particular form of the 
external field {hlN)= h~N)6i}N=l we use is 

6 i = { + 1  if i*-*(il, i2,...,ia) andO<il<.nx/2 
- 1  if i*-+(ix,i2 ..... ia) and i l>nl /2  (2.3) 

where for simplicity we suppose that nl is even; the opposite case can be 
treated with minor modifications. This form of the field is chosen because 
it seems to be the most probable candidate for producing Dobrushin 
phases ~ (although, as we shall see, it does not), i.e., phases for which the 
single spin distribution have positive mean in one part of the lattice [-say, 
for all i*-+ (ix, i2,... , ia) with i x < - l ] ,  negative in the other (ix > l), with a 
transitional region of finite thickness in between. 
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The main object of our investigation will be the probability distri- 
butions of the random variables sj, j =  1, 2,..., N, and the macroscopic 
observables N - ~ S  "u,_J=~ sj (normalized total spin, or magnetization) and 
N-V ~U OjSj generated by the Gibbs distribution in the thermodynamic ~..~j = 1 

limit ( N ~  oe). Exact values of the parameters v and ~c will be specified 
later to obtain nontrivial distributions. For simplicity we consider the 
thermodynamic limit over the sequence of d-dimensional cubes, that is, we 
suppose ntN-1/d--+ 1 as N-+ oo for any l =  1, 2 ..... d. 

We will be concerned mainly with an investigation of the properties of 
the homogeneous spherical model (in the absence of any external field). 
The external field in (2.1) will serve as an auxiliary tool,; its role will be 
similar to that of boundary conditions in the investigations of the lattice 
spin models. The influence of boundary conditions on the free energy per 
spin is usually negligible in the thermodynamic limit; to have a similar 
situation with an external field we will switch it off in the limit N-+ 0% 
choosing h(U)=N-Ph, h, p > 0 .  It turns out, however, that there is a 
qualitative difference in the behavior of some other thermodynamic 
quantities in the thermodynamic limit, depending on the value of p; see 
below. 

One can use the well-known technique after Berlin and Kac (8) to 
calculate the mean value of a function f (sl ,  s2 ..... SN) [with respect to the 
Gibbs distribution (2.2)] 

<f(si, s2 ..... SN)>N~- ON1 fR" 

F 
x f ( s l ,  Sz ..... S N) exp L2flJ 

where ON is the partition function, 

.fR dsj6 s Z - N  
y= / 1 

N 

<i,j> "= 

j= l 1 

3 f f l j  N 1 (N) (2.4) • 2flJ ~ sisj ~ hj sj 
<i,j) " = 1  

That technique involves a change of the integration variables from 
{si}U=1 to {yi}U_ 1 implemented by an orthogonal transformation which 
diagonalizes the quadratic form ~<~,y> sisj and the introduction of an 
integral representation for the delta function. 

As is well known, (8) the orthogonal eigenvectors V (k), k =  1, 2 ..... N, 
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of the (symmetric) interaction matrix C o. (defined by 2Z<i,j>sisj = 
u Co.sisj) are ~ i , j =  l 

(2.5) 
with corresponding eigenvalues given by 

~ " ~ = 2  cos 2 ~ ( k -  1) l-[ n? I 
j=l l = j  

The interaction matrix is diagonalized by the following change of variables: 
N 

sj = ~ Vy)y,; j=  1, 2,..., U (2.6) 
l = 1  

which yields 

R R j =  l 1 

x e x p l  fl ~ (J2Id) y~+h(N)o~lyl) 1 (2.7) 
l = l  

where 

?(yl ,  y2 ..... yN)= f v~'~y,, v~'~,,2 ~,,..., V%~ y, 
l 1 1 = 1  l = 1  

and a similar formula for ON. In the last expression we introduced 
coefficients ez defined by the relation 

N N N N 

2 h}N'sJ=h(N'Z Y', aiV)"Y' =h(N'y', ~'Y' (2.8) 
j = l  . j - - I  l - - 1  l - - 1  

Hence, using (2.3), one has the following expression for these coefficients: 

~l = ~ g(t) - g(ll 
. j+nl(k I) 2 j + n l ( k  1) 

k =  1 j =  h i / 2  + 1 

The summations can be performed explicitly (see Appendix A for details), 
yielding 

(2__./-N[-1 sin[2~(l-  1)/U] ] 

_ )---n-7--1 L + 1 ~ ~ - ~ ] ~  (2.9) 
~ l = }  if l = l + ( 2 m - 1 ) N / n i ,  m = l , 2  ..... nl/2 

! 

(,0 otherwise 
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The integral representation for the delta function used is (8) 

1 (,ioo 
6(x) = ~ J , ~  e ~ dr (2.10) 

We shall use the formulas (2.7) and (2.9) as a starting point in the next 
sections. 

3. C O R R E C T I O N  TO T H E  LEADING A S Y M P T O T I C  OF THE 
FREE E N E R G Y  

After introduction of the new integration variables (2.6) in the formula 
(2.4) and the integral representation (2.10) for the delta function one can 
perform the integration over the variables Yt, l = 1, 2 ..... N, obtaining the 
following expression for the partition function: 

where Zo > d, 

Ou ~i \211J] f~o ~ dzexp[ZNfiJqSu(Z)] (3.1) 

,P  N ( z )  = z - - -  

and 
2 

L2nl JJ 

1 N ( z - l~ !d )~  Tn,(z) (3.2) 
4NflJj~=l log 2 "I j + 

I sin(2zt(2m-- l!/n,) ]2 
n~2 1 + 1 - cos(2g(2m-- 1)/nl)J 

m = l  

1 
x 1 -  :~dl ( 3 . 3 )  

"u 1 + (2m 1)~2...~a/2 

is the field-induced term. Summation over the variable m (see Appendix B 
for details) yields 

( h ( N ) )  2 

where 

1 x 2  - 

n~E(z- d+ 1)  2 .  1 ]  ~/2 x~'/2+ 

x~.2= ( z - d +  1)T- [ ( z -  d +  1) 2 -  1] '/2 

(3.4) 

When N ~ o o  the field-induced term Tn~(z) converges uniformly to 
T(z) = h~/16j2(z - d) (where ho = limN~ ~ h ~NI) for z contained in any set 
of the form [a; - o e ) ,  a > d. Evaluation of the integral in Eq. (3.1) can be 
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performed using the saddle-point method directly if the limiting function 
~b(z) = limN~ ~ q~N(Z) has a minimum on the real axis at a point z*>  d 
[there exists at most one minimum on (d; oe)]; otherwise this integral 
needs special investigation. One can formulate the result (if z* > d )  as 
follows. 

For z ~ (d~ oe ) 

1 (h0~2 1 

where 

;? coso,) 
L ( z ) = ( 2 z t )  a3o "'" t=l l=1 

(3.5) 

Let assume ~(z) has a unique minimum at a point z * >  d. Then 

[ _ N ~ ( z * ) n J  \ 2 f l J ]  e x p [ 2 N f i J q ) N ( Z * ) ]  1 + 0 (3.6) 

as N ~  ~ ,  where (for each N) Z*N is the minimum of the function ( I )N(Z)  o n  

the interval [d; oo). 
The condition z* > d is definitely satisfied if for z/> d the function 

L(z) 
~ b ( z ) = z - - -  (3.7) 

4flJ 

has a unique minimum at Some z~'> d. According to Berlin and Kac, (8) for 
d~>3 there exists a tic< oo such that ~b(z) has a unique minimum z~' for 
fl < tic, and for fl ~> Bc the function ~b(z) increases for z > d and has a mini- 
mum at z = d. The range of fl, fl < tic, we shall call the high-temperature 
region. If fl < tic, z > d, and h (N) = h N  -p ,  p < 1/2, one can write down [see 
Appendix C for an estimate of the asymptotic behavior of the sum 
Zu=l log(z-- z~(a)~l 2 "~j I d 

Cu(z) = z - ~ + N -2p 
h 2 

16J2(z - d) 
t- O( N - 2p - 1/d) 

as N ~  ~ .  Consequently, if f l<tic ,  one has the following asymptotic 
formulas for the minimum of ~N(z): 

z *  = z~ + N 2; fl h2 
d) + 
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and free energy: 

1 N 1 2p h2 
Fu( f i ) - - - - - f i lOgOu=Nf ( z~) - -  8 j ( z ~ _ d )  +O(Ul-2P) (3.8) 

where z~' is the unique (for z/> d) minimum of the function ~b(z) and the 
value of the function 

f ( z ) =  2---~--2Jz- log 2 ~  (3.9) 

at the point z~ is the free energy per site of the spherical model without an 
external field. When p >~ 1/2 the free energy has only the usual high- 
temperature log N correction [due to the presence of N -  1/2 in (3.6)]. 

The condition z* > d is also satisfied if h (N) tends to a nonzero limit ho 
(as N ~  ~) .  To eliminate the dependence on N produced by h (N) let 
h (N) - h 0 (the additional dependence on N produced by a nonconstant h (N) 
can be considered in the same way as for h0 = 0 and ~ < tic). Then [see 
Eq. (3.4) and Appendix C] 

I~)N(Z ) = ~ ( Z )  - n ~  1 g(z) + O(exp(-N6))  

uniformly on {z: a ~< z < o% a > d} for some positive ~, where 

hl 
g(z) = 4j2( z _ d)3/2 (2 + z - d) 1/2 

Consequently, for h o e 0  the unique (for z > d )  minimum of I~N(Z ) 
possesses the following asymptotic behavior: 

z , = z .  + n l  I g'(z*) q)"(z*~ + O(n ~-2) 

Taking into account (b'(z*)= 0, we obtain the asymptotic formula for the 
free energy 

Fu(fl) = N If(z*) hg N1 2/d) 8J(z ~-  d)] + 1/a2Jg(z*) + O(NI (3.10) 

Let us notice that for z > d the function ~.N(Z) coincides with the corre- 
sponding function of the spherical model in a homogeneous external field (8t 
up to corrections O(n~-l) produced by Tnl(z). Consequently, the following 
two conclusions about the situation when h o r can be drawn. 
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(i) An arbitrary weak (that is, for any ho>0)  external field of the 
form (2.3) destroys the phase transition (that is, the free energy per spin 
becomes an analytic function of the temperature). 

(ii) The interface between areas of different dominant spin orienta- 
tion (which exists for any temperature if hor  0; see next section) produces 
an N 1 1/d correction to the free energy, as is widely accepted (see, e.g., 
ref. 5). 

We now study the low-temperature region (in the case h (N)= N-Ph, 
p > 0) by first investigating the behavior of the field-induced term T,~(z) in 
the vicinity of the point z = d. Let us notice first of all that, being a sum 
of functions steadily decreasing to zero for z~> d [-see formula (3.3)], the 
field-induced term has this property itself. For the same reason the first 
derivative of this term is steadily increasing for z/> d, having the modulus 
decreasing to zero. Because Tnl(z) is continuous (for any N <  oo) at z=d, 
one can calculate Tn~(d) by passing to the limit z ~ d +  0 in Eq. (3.4); this 
leads to 

h 2 (U2/a+8~ 
Tnl(d ) = 4J2N2p \ -~ J 

Similarly, for the derivative of The(z) at the point d one obtains 

h 2 (N4/a N2/a 1 )  
T'~(d)=4JZNZp 1 - - ~ + ~  + 

So, it is possible to anticipate that there exist three different regimes for the 
behavior of the model, depending on whether T'nl(d)--. oo (strong-field 
regime), or T',l(d ) --* C, 0 < C <  oo (moderate-field regime), or T',~(d) --* 0 
(weak-field regime) as N--* oo. 

3.1. Strong-Field Regime ( O < p < 2 / d )  

It is convenient to introduce a "natural" scale for the integration 
variable z in (3.1). In the strong-field regime this can be done by intro- 
ducing a new integration variable ~ defined by z -  d =  ~N -p (in the low- 
temperature region), obtaining 

[/ "iT, "~ N/2 • j  - ~2 1 

~ log l + ~ 7 - ~ e i ~  x f ~~176176 d~exp  2~JNl-~ ~ 4~J j=2 
~0--ioo N / ~  ~ 2"~j / 

/ h'~21 
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for the partition function. Note that in the low-temperature region the 
saddle-point equation determines the value of a correction to the main 
( ~ N )  asymptotic of the free energy. 

The integral in (3.11) is in a form convenient for an application of the 
saddle-point method in the sense that the saddle point does not tend to 
any point of nonanalyticity of the subintegral function when N-~ oo, in 
contrast to the formula (3.1) for/3 >/tic, where the saddle point tends to the 
branch point (this phenomenon is known as "sticking" of the saddle point). 

For d>~ 3 as N ~  oo the following (uniform in ~ in any bounded subset 
of the positive real semiaxis)asymptotic formula holds: 

where 

log( + 4flJ --1 (a) =; ~ + O(N p/2) j=2 d - ~ 2 j  / 

W(z) = (2rc)a Jo "'" dc~ z a 
l = l  - -~-~ /=  1 COS (DI 

is the Watson function. Evaluating the integral in (3.11) using the saddle- 
point method, one obtains [for fl > tic = W(d)/4J] 

F N ( ~ ) = N f ( d ) - N  1 ~ 1 -  + o ( U  1 P) (3.12) 

wheref(d)  is given by (3.9) and we made use of the result of Appendix C, 

N 

~ l o g ( d -  �89 a)) = NL(d) + O(log(N)) 
j - -2  

Taking into account Eq. (3.8), we conclude that the N 1 p correction to the 
leading behavior of the free energy fl(fl) in the strong-field regime has a 
nonanalyticity at tic, 

O h if f l<fic 
- k ( ~ )  = ~/2 

( 1 - ~ )  if 8>fl~ 

3.2.  M o d e r a t e - F i e l d  R e g i m e  (p  = 2/d) 

As in the strong-field regime, it is convenient to introduce a new 
integration variable ~ = N2/a(z- d) in (3.1) to perform integration on the 
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"natural" scale. This yields a formula similar to (3.11) except that the 
field-induced term becomes (see Fig. 1) 

h 2 N2/dTnl(Z)_._~T(~):__~{ ~ (2~) 1/21 tanh [~(~)1/2]} 

Consequently one can calculate the correction to the free energy using the 
same procedure as in the strong-field regime, provided the corresponding 
sequence of saddle points does not tend to a point of nonanalyticity of the 
integrand, in which case one obtains, similar to (3.12), 

FN(~) = Nf(d) - N 1 -2 /d2Jq(~*)  + o ( N  1 2/d) {3.13) 

where q(~) is given by 

(3.14) 

and ~* its unique point of minimum on the interval (0; ~) .  The range of 
temperatures where Eq. (3.13) is valid is determined by the condition 
~*> 0. Let us notice that the function 

~(~) = ~ {1 -- 2 (~)1/2 tanh I ~  ( I ) 1 / 2 ] }  (3.15) 

is monotonically decreasing on the interval [0; oc) with an increasing 
negative first derivative (see Fig. 1). Hence, if the first derivative of q(() is 
negative in the vicinity of ( =  0, then there is a unique minimum of this 

{(z) 

0.04 

0.01 

0 10 50 100 z 

Fig. 1. Plot of the function ~(~) given by Eq. (3.15), showing the perturbation of the saddle- 
point equation in the moderate-field regime due to the presence of an external field. 
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function on the interval (0; oe), otherwise q(~) attains its unique minimum 
on [0; or) at the point ~=0.  The Taylor expansion of the function ~(~) is 

1 
~(~) 24 480 ~-0(~'2) (3.16) 

Consequently, if 

480 4 )  > 1 

then for fl >/~c there always exists a unique minimum of q(~) for some 
~>0.  If 

l(h)2 
480 4-) ~< 1 

than one gets a second "sticking" point at 

1 - ( 1 / 4 8 0 ) ( h / 4 J )  2 

"Sticking" signals that the scale z -  d =  N-2/d~ is not the "natural" one for 
fl >/~c. The "natural" scale for z in (3.1) now becomes z -  d =  ~/N.  Hence, 
instead of (3.11), one obtains 

x exp log d -  2~ a) + N 1 -  2/d flJ h 2 

xf;~176 d~exp  2flJ iF ,  log 1-~ 

- ~-) 4 ~ - 6 [ 1 + o ( 1 ) ]  (3.17) 

where the integral produces only a contribution of order N O and does not 
make a contribution to the next to the leading asymptotic of the free 
energy. From (3.17) one obtains 
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I 

Fig. 2. The O(N 1+ 2/d) asymptotic of the free energy in the moderate-field regime. 

Summarizing, we conclude that the correction to the leading behavior of the 
free energy in the moderate-field regime has two points of nonanalyticity 
(see Fig. 2), 

f !  min _ A ( ~ ) =  ~o~ ~ 

if /~ </~c 

q(~) if //c < / / <  ]~ 

if /~ </3 

3.3. Weak-Field Regime (p<2ld)  

In this regime the "natural" scale for the integration variable in (3.1) 
is introduced by the change of variable z -  d = ~/N for all /3 > tic, which 
yields for the field-induced term 

T'q(d+N-l~)=N2/a 2~ h2 [ ~-~-N2/a 1 ~ 1 
16J 2 480 + O(Na/a-2) 

For the partition function one obtains a formula similar to (3.17), whence 
one derives the correction to the free energy 

FN(fl) = Nf(d)  -- N ~ 2p + 2/~e 1 (fl) + o(N 1 20 + 2/a) 

where 

f O if /~ <//~ 

f l ( f l )= j ( h , ] 2  if ~c</~ 
I, 12 \ 4 J ]  
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and we suppose 1 - 2 p  + 2/d> O. Note that fl(fl) does not depend on/3 for 
fl >/~c and coincides with a similar function in the moderate-field regime 
for f l > ~ .  

4. M E A N  V A L U E S  OF S INGLE SPIN V A R I A B L E S  

To calculate the average value of a single spin variable Sk one has to 
substitute f ( s l ,  s2 ..... SN) = S~ in Eq. (2.7). Then we introduce the integral 
representation for the delta function and integrate over { Ym} N= 1 to  obtain 

N h(N) V~ l) ~ 1 _ - 5 ~  (4.1) 
<Sk)N= ~ V~O<Y')N= 4J ,=1 

I = 1  \ ~  2"~l /z ,N 

where we employed the notation 

flJ ( Tr )N/2 f[~176176 dz f(z)exp[2NflJ~N(Z)] (4.2) (f(Z)>z'N=ON1 ~-i\2flJJ o i~ 

and ~N(Z) is given by (3.2). One can evaluate this integral directly if the 
function q~(z)- l imu~ ~ qON(Z ) attains its unique minimum (on [d, oo)) at 
a point z * >  d which occurs in the high-temperature region if h (N)= hN -p 
and for all temperatures if h(U)---~ h 0 7~0 [in which cases the scale of the 
integration variable z in (4.1) is the "natural" one]. In the former case the 
magnetization profile is trivial, 

<sk> = lim <Sk>N=O 
N ~ c o  

uniformly over k~ {1, 2 ..... N}. In the latter case, taking into account 
formulas (2.5) and (2.9), one obtains the following result: 

ho ~=~ [cos 2~ (2m_  l ) ( k_  l ) + sin 2~ (2m_  l ) ( k_  l )] 

[ s'_m(2z/n~)(2m~l) 
• 1 + 1 -cos(2rc/nl ) (2m- 1)1 

1 
x (4.3) 

z * -  d+ 1 - cos(2rc/nl)(2m - 1) 

Note that <Sk> N is a periodic function of k, i.e., <Sk>N = <Sk_nl>N for 
k > nl and hence it is sufficient to study just one row of the square lattice. 
So, all the formulas below describe a single (but arbitrary) row of the 
lattice. Performing the summation in (4.3) (see Appendix B), we come to 
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Fig. 3. The magnetization profile [see (4.4)] for fl = 10, h0 = 0.1, and J= 2 (circles) and for 
fl=0.1, h0=0.1, and J=2 (dots). 

a result similar to that of Abraham and Robert <3) (they considered an 
external field a bit different from ours) 

( s k ) -  = lim (Snl/2+k)N =h 
N ~ o o  

z-*-d(21 1 l+X~2 )_. if k~<O 

(z* d) 1 + X l /  

(4.4) 

(see Fig. 3 for plots of the "typical" h ~ 0 shapes of the magnetization 
profile). 

When h = 0 one needs to change the integration variable in (4.1) in the 
low-temperature region (as we did in the previous section) to get into the 
"natural" scale. 

4.1. Strong-Field Regime 

Introducing the new integration variable ~ = NP(z-  d) and using the 
saddle-point method [cf. (3.11)], one obtains the following asymptotic for 
(Yl)N ( a s  N ~  oo): 

hc~ t 
(Y,)N= 4JUO(d+ U_p~ , _  ~ )'2'd)) E1 +o(1) ]  

where ~* is the "limiting" saddle point of the integral (3.11). Let us 
introduce, instead of the original lattice index j, a shifted and rescaled 
variable 7 according to j=n l /2  +yN 0/2. Then, using (4.1) and (B.9) from 
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Appendix B, one obtains the expression for the magnetization profile in the 
strong-field regime (in the limit N--+ oo) 

(s~}= --sgn(7) (1--~)l/2 {1--exp [--]7[ (~)l/2 (fl ~_-~)l/al} (4.5) 

where 2 is a continuous variable, 7 e ( - o o ;  oo). 
Comparison with the rescaled magnetization profile in the two- 

dimensional Ising model, (I) which in notations adapted to ours can be 
written as 

(sT) =m* sgn(7) q~(b 171) 

( /  , _ u 2  where q~(x) = 2 x/7) ~0 e du, m* is the spontaneous magnetization, and 
b some constant which depends on the parameters of the model, suggests 
that the interface fluctuations in the spherical model have an essentially 
different character from those in the 2D Ising model. 

4.2. M o d e r a t e - F i e l d  Reg ime 

Due to the appearance of the second critical point at /~ =/~c in the 
moderate-field regime the "natural" scale for the integration variable in 
(4.1) differs above and below /~c. For the integral in (4.1) one gets a 
formula similar to (3.17), and using the saddle-point method, we obtain the 
following results. 

(i) For f l c < / ~ < ~  

has (Y,)N- 4JN2/U(d + N_:/a~, l~(a)/[1 + o(1)] (4.6) 

as N--+ oo, where ~*>0, the point of minimum of the function (3.14). 
Introducing a rescaled variable 7 =j/n1, one has in the limit N--+ oo from 
formulas (4.1) and (B.9) 

7Tgh 1 - 2 y )  {1 _ cosh[(12 7 ~1] - �89162 ~ 
( s ~ ) =  , sgn( _ cosh[�89 j (4.7) 

where 7 is a continuous variable satisfying 0 ~< 7 ~< 1. In particular, in the 
limit ~* --+ 0 one gets the steepest possible magnetization profile, 

y 2  +~  if ~ 7 ~ < 1  

(see Fig. 4 for the plot of the magnetization profiles in this regime). 

822/72/3-4-18 



682 Patrick 

1 

0 

1 _  
2 

-1  

, > j  
Fig. 4. The magnetization profile in the moderate-field regime [see Eqs. (4.7) and (4.8)]. The 
curve with the higher amplitude corresponds to the steepest possible magnetization profile and 
is given by Eq. (4.8). 

(ii) For fl > #~ instead of (4.6) one gets 

<y,>N=4JNZ/aLJ;o_,oo d~ exp 2Jfl# 1 fl 480 4-) \ 7JJJ 
x (;0+ ioo d~ exp{2Jfi{[ 1 - flc/fl - (1/480)(h/4J) 2 ] } 

�9 '~0-- Joe x/~ (d +  N- I~  - • ! 

[1+o(1)3 

(4.9) 

because of the different "natural" scale. From (B.9) we see that for this 
temperature range the magnetization profile "freezes," that is, becomes 
independent of the value of fl and is given by (4.8). 

4.3. Weak-Field Regime 

In the weak-field regime for fl > tic the "natural" scale for the variable 
z is introduced by the change of variable z -  d= ~/N (as in the moderate- 
field regime for/~ > tic)- So, for the magnetization profile one gets a formula 
similar to that for fl >/~c in the moderate-field regime, but the magnitude 
of the external field now scales as hN -p, p >2/d [cf. (4.9)]. Hence, the 
average value of a spin variable tends to zero and the following estimate for 
the rate of convergence is valid: 

<s,)=O(N 2/d-p) as N--+oe m a x  
j =  1, 2,..., N 
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5. DISTRIBUTIONS OF THE SINGLE SPIN VARIABLES 

To find the limiting distribution of the random variable sj it is 
sufficient to calculate its characteristic function <e "~j> --limN_~<e;'~J>N. 
After standard transformations one obtains [using the notation (4.2)] 
from (2.7) 

<#'SJ>N= <(bj(Z, t) >~,N (5.1) 

where 

V t 2 N 

L ~PJ m = 1 
I~ ( d )  

Z -  2 ~ m  

h(N) ~ (J) l ~- it - - ~  
m = l  ~ 2 " ~ m  _1 

One can simplify the expression for (~j(z, t) if one takes into account the 
identity 

~ sin[2n(m - 1 ) ( k -  1)/N] cos[2~(m - 1 ) ( k -  1)/N] _ 0 (5.2) 
1 ] (d)  

m = l  Z-- "2"~m 

which can be proven exactly as the formula for Z2 in Appendix B. The 
identity (5.2) yields [using the notation of (B.8)] 

__ t 2 N 

Oj(z, t) = exp L S ~  ~ 1 -  
1 h (N) 1 !~(a) + it - ~ -  <sj>,, (z) 

Z -  2,~m 

and hence the characteristic functions (5.1) have the same periodicity 
property as <sj>n, (z), namely, 

< eitSJ > . x = < eitq +.l >., 

So, again, it is sufficient to consider only one row (say 1 <~j<<.n,) of the 
original square lattice. As in the previous section it is convenient to 
introduce rescaled coordinates 

[ 7 = N ~ , j = l ,  2,...,nl, a~  0, 

where a determines the scale; a = 0 corresponds to the microscopic scale 
(i.e., its unit length is of the order of an elementary cell of the lattice), 
a = d-1 corresponds to the macroscopic scale (i.e., the size of the system is 
several unit lengths). 

In the high-temperature phase the influence of the field-induced term 
is negligible (when h (m = N-Ph,  p > 0) on all scales and we obtain formulas 
for the characteristic function (5.1) and the corresponding distribution 
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density (with respect to Lebesgue measure on R ~) which coincide with that 
of the spherical model without any external field (and fl < tic) (see, e.g., 
ref. 24) 

(e "sk) = e -#/2, which implies p(s) = (270 - m  e -s2/2 

We next examine the characteristic function in the low-temperature 
regime. 

5.1. Strong-Fie ld  Regime 

In this regime, after again performing the change of the scale 
z-d=N-P~,  we evaluated the integral in (5.1) using the saddle-point 
method. Taking into account the definition of tic, one obtains in the 
different scales (we let j be N dependent according to j =  N~7 + �89 

(exp(itsr) ) - lim (exp(itsN~ + nl/2 ))N N~cx3 

'exp ( - 2 ~  t2 ) 

exp ( -~ t2+i t ( s . e ) )  

e x p I - ~ t 2 - i t s g n ( y ) ( 1 - ~ )  

if 0~<a< p- 
2 

if c r= ;  (5.3) 

1/21 1 if P--<a~< 
2 

where ( s t )  is given by the formula (4.5). The corresponding distribution 
density is again Gaussian 

Iexp  ( - ~ )  if 0 ~ < a < ;  

( tic ~1/2 [ flc(S~(---'S7))2'] if P 
pT(s) = \ ~ j  ,~ exp 2fl J ~r = ~- 

l exp 2fl 2 < 

(5.4) 

The following conclusion can be drawn from (5.4): there is no interface in 
the scales with 0 ~< a < p/2; there is a smooth interface between areas of 
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different dominant spin orientation in the scale a = p/2; there is a sharp 
interface (similar to the Heaviside 0 function) in the scales p < a ~< d -1. 

Let us notice that in the thermodynamic limit the second moment of 
the random variables Sk equals flc/fl (when k is nonrescaled and finite), 
which indicates that the model is not a very good approximation for 
realistic ferromagnets in the low-temperature region. Note, in contrast, that 
the generalized spherical model, which is the infinite-component limit of 
the n-vector model, has the local condition ( s ~ ) =  1. Only in the scales 
a>p/2, ?=J/N~, does one get the right value of the second moment 
(a 2) = I. 

5.2. M o d e r a t e - F i e l d  Reg ime  

In the range of temperature Tc< T< Tc one obtains essentially the 
same results as in the strong-field regime, because the integral in (5.1), after 
the change of scale z - d = N-2/d~, can be evaluated using the saddle-point 
method. For the distribution function of a spin variable one obtains 

( f l c ) m l e x p ( - ~ )  if 0~<a< 1 

p~(s)=\~fl j  [exp I flc(s_(s~))21 if 1 
J 

where (s~) for a = d  -1 is given by Eq. (4.7). For T < T  c we cannot 
evaluate the integral in (5.1) using the saddle-point method. However, after 
the change of integration variable in (5.1) according to z - d = ~ / N  one 
obtains [cf. (3.17)] 

F flct 2 c+iov d(exp((~) 
(exp(its,/)) = exp L - - - ~ -  + it(s'l) .-i~ x/~ 

i oo  dr exp - (~" - t2rn*] - (5.5) 
x s ioo x ~  4~ ] 

where c > 0 and m* is given by 

m * = l  _tic 1 ( h )  2 
fl 480 4-J (5.6) 

This yields the following formula for the characteristic function(24): 

(exp(its,)) = exp ( -~ -  -fi] (cos(t xfm -g) exp(it(s v ) ) 
if 0~<ry< 1/d 
if a =  1/d 

(5.7) 
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where (s~) is now given by the formula (4.8). The corresponding distribu- 
tion functions are given by 

p~(~) = ~ \~-~} 

~ exp [ 

if 
• 

exp i 

if 

/3c(s + m*)2] 

1 
0 ~ < ~ < ~  

/L(s  - ( s ~ )  - 2/~ m*)Zl+exp I /~(s (s~)+2_/~ m*)2~.j 

1 

a (5.8) 

Note that a smooth interface in the moderate-field regime appears only in 
the macroscopic scale and it is never sharp (i.e., 0 function). 

5.3. W e a k - F i e l d  Reg ime 

In this regime the influence of the external field is negligible and one 
obtains the same formula for the distribution of the single spin variables as 
in the spherical model without external field (see, e.g., ref. 24). One can 
obtain it formally from (5.8) by putting h = 0. 

6. D I S T R I B U T I O N  OF S O M E  M A C R O S C O P I C  V A R I A B L E S  

The distribution of the properly normalized magnetization N -  v ~j=IN S j  

and of H v - N  -v ~N=lbjSj [see (2.3)] (which we will see plays the role of 
an order parameter) are of the most interest. To find both of them we shall 
calculate their characteristic functions. By the standard procedure one 
obtains for the magnetization 

(m) itN -v ~ sj ZN, v ( t ) - -  = e x p  = exp (6.1) 
L j = l  N 8 / ~ J ( z -  a)J/z,N 

and 

Z~(t)-= exp itN ~ ~ ~jsj 
L. j = l  N 

= exp 8/3J z - -  2"~rn 4J 
r n = l  

, , . _  ! ,1 (a ) / /  
r n =  1 ~ 2 " ~ r n  J I z ,  N 

(6.2) 
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for the order parameter, where we substituted h (N)=hN -p. In the high- 
temperature region ( T >  To) the integrals in (6.1) and (6.2) are evaluated 
by the direct use of the saddle-point method. To get a nontrivial distri- 
bution of the magnetization one has to choose v=  1/2. In the high- 
temperature region (because the influence of the field is negligible when 
p >0 )  we arrive at the well-known (for the spherical model without an 
external field) result (21) 

l i m  Z(Nm)ll2(t) = exp 8flJ~f-- d) (6.3) 
N ~  

where z~ is the unique (on Ed; Go)) point of minimum of the function (3.7). 
That tells us that in the high-temperature region the random variable 
(1/x/-N) ~u= 1 Sj in the thermodynamic limit has a Gaussian distribution 
with zero mean and variance [4flJ(z~-d)] -m. We now turn to the 
variable//~ in the high-temperature region. Making use of (B.1) to evaluate 
the sum over m in (6.2), one obtains for Z~m(t) - limu ~ ~ X(u~(t) 

I h]  Z~H_)p(t) = exp it 4J(z~- d) 

Z~2)(t) = exp 8flJ(z~- d) + it 

, . ) - [  ] 
Z1/2 (t) - exp 8flJ(z~- d) 

1 
if 0 < p < ~  

h if p = -  
4J(z~-d  2 

1 
if ~ < p  

Hence, the distribution of (1/N l -p)  zN=I 6sS s in the thermodynamic limit 
becomes degenerate and concentrated at the point h/4J(z~-d) when 
0 < p < 5/2. If p = 1/2, the random variable N -  1/2 zN= 1 6jSj has a Gaussian 
distribution with the mean h/4J(z$-d) and variance [4Jfl(z~-d)]-i/2. If 
p > 1/2, this random variable has zero mean and the same variance as for 
p = i/2. 

We next study the low-temperature region, where one should rescale 
the integration variables in (6.1) and (6.2) prior to the application of the 
saddle-point method. 

6.1. S t r o n g - F i e l d  Reg ime 

In this regime after rescaling in the integral in Eq. (6.1) according to 
z - d =  N-P~, it becomes apparent that one should choose 6 = (1 + p)/2 to 
get a nontrivial distribution for the normalized total spin, in which case 

lim (m) [ - (  (6.5) ] 
N~ ~ fl ) 2 3 h i  
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Equation (6.5) is essentially the same as (6.3), i.e., the distribution function 
of the properly normalized magnetization is Gaussian (in the thermo- 
dynamic limit) with zero mean and variance a2=(1/flh)(1-flc/fl) m. 
However, there are abnormally large fluctuations, since we have used an 
unusual normalization factor N -(l+p)/2, where (1 +p)/2 > 1/2. 

For the characteristic function of (l/N)~7=~ 61ss ' after rescaling the 
integration variable in (6.2), one obtains 

ulinao Z~] ( t )=exp  it 1-- (6.6) 

Hence, the random variable ( l /N)~7=16isj  in the thermodynamic limit 
converges (in distribution) to a "nonrandom" limit ( 1 -  tic~J3) m. 

6.2. Modera te -F ie ld  Regime 

As in the previous section, in the moderate-field regime there is a 
range of temperatures Tc < T<  Tc where the behaviors of the characteristic 
functions (6.1) and (6.2) are similar to those in the strong-field regime. 
Namely, the distribution density of the properly normalized magnetization 
N -  1/2-  1/d ~-~;= 1 Sj is 

1 ( s2 )1/2 1 ( 1 _ T )  1/2 
p(m)(s) -- (2ZQ~/--T-~a exp \ -~-~5a2 } , ~ = fl-h \ T J  

For the random variable (l/N) ~7= ~ 6jss one obtains 

lira ~ ) l ( t ) = e x p [ i t h  ,(~*)] 
N~(x3 

where the function ~(~) was defined in (3.15) and ~* > 0  is the positive 
minimum of the function (3.14). 

For temperatures T<  Tc one need to again perform rescaling of the 
integration variables in (6.1) and (6.2) according to z - d = ~ / N  and as a 
consequence one obtains significantly different results than in the strong- 
field regime. The characteristic function for the magnetization takes the 
following form: 

z m)(t) = COS(,J -  t) 

where m* is defined by formula (5.6). This tells us that the magnetization 
in the thermodynamic limit converges (in distribution) to a dichotomic 
random variable which obtains values +_ x / ~  with equal probabilities. 
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For the characteristic function of (l/N) y~u= ~ (~jSj, using the expansion 
(3.16), one gets the following expression: 

Z~m(t)=exp (it 9~ ) 

Consequently, the random variable H~ converges (in distribution) to the 
"nonrandom" limit as N ~  ~ ,  

1 N d h 
lim ~ ~)jSj = 9 ~  (6.7) 

N~cc Nj=I  

Note that the limiting value of H,  does not depend on temperature (for 
T< To), that is, not only is the magnetization profile frozen for T<  Tc in 
the moderate-field regime, but H,  is as well. 

From (6.4), (6.6), and (6.7) we see that H I = (I/N) ~N= 1 6jSj plays the 
role of an order parameter of the model, i.e., it equals zero in the high- 
temperature region (in a disordered phase) and is greater than zero in the 
low-temperature region (in an ordered phase). 

7. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

Although the external field (2.3) used as an infinitesimal perturbation 
fails to produce translational variant Gibbs states (as was first noticed by 
Abraham and Robert (~)) and as a consequence the magnetization profile in 
the microscopic length scale, when the unit of length is the lattice spacing, 
is trivial (i.e., ( s ~ > = 0  in the thermodynamic limit), several important 
physical conclusions can be drawn. First of all, quite often experimentalists 
are not interested in the properties of ferromagnets on the microscopic 
scale, but on some rougher scale or even only on the macroscopic scale 
(that is, when the unit length is of the order of the size of the system). So, 
the absence of phase separation on the microscopic scale, that is, the 
infinite width of the intermediate region measured in units of the lattice 
spacing, does not mean that the phase separation cannot be experimentally 
observed. In this respect formulas (4.5) and (5.4) tell us that a "very" weak 
external field can produce phase separation on some appropriate scale and 
show how rough this scale might be for phase separation to be still 
observable. 

The richest behavior is possessed by the model in the moderate-field 
regime (even a second phase transition appears). The phase diagram of the 
model in this regime is plotted in Fig. 5. Phase I (0 > 0c) is the ordinary 
paramagnetic phase common for ferromagnets when the temperature is 
high enough. Phase II [0 < 0 c, (h/4J) 2 > 480] is a phase where the external 



690 Patrick 

h 

4J II I 

4 ~  

', 6 

-4V~O 

Fig. 5. The phase diagram for the model in the moderate-field regime. Phase I is the 
ordinary pa~amagnetic phase, phase II is a phase where the external field dominates over 
ferromagnetic interaction and temperature fluctuations, and phase III is a mixture of phase II 
and the ordinary ferromagnetic phase. 

field (2.3) dominates over the ferromagnetic interaction (and temperature 
fluctuations) producing a magnetization profile (though only on the 
macroscopic scale). Phase III [0 < 0c, (h/4J) 2 < 480] is a hybrid of Phase 
II and an ordinary ferromagnetic phase (except for the case h = 0, where 
one has a purely ferromagnetic phase). 

Brankov and Danchev ('~ singled out a set of the Gibbs states for the 
spherical model with single spin distributions of the form 

p~(s)=ap(+)(s)+(1--~)p(-)(s), 0~<~<1 (7.1) 

(in a notation adapted to ours), where 

(1 p(+-'(s,=~2-~ ) exp {-~-~ Is-T- - ~ )  

It becomes apparent from Section 5 that the set (7.1) is just a subset of a 
family of limit Gibbs states with single spin distribution of the form 

q~;u(s)=~q(~+)(s)+(1-e)q(~-)(s); 0 ~ c ~ < l  

[ h h ]  (7.2) 

# e MS - - 64-J; 64J 

where 

(1/480)(h/4J) 2 ~< 1 and rn* is given by (5.6). 
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Pure Gibbs states-with single spin distributions q~-+~(s), #~Mt~, as 
well as their linear combinations can be singled out using [in addition to 
(2.3)] a homogeneous external field of the type used in ref. 10 (decreasing 
to zero sufficiently fast as N--. ~) .  Equation (5.8) derived in Section 5 
corresponds to ~ = 1/2 in (7.2). 

A close connection between the spherical model and the free boson gas 
was noticed for the first time by Gunton and Buckingham. (15) In particular 
they showed that critical indices for these models are identical. The most 
prominent phenomenon in the ideal Bose gas is Bose-Einstein condensa- 
tion. It was shown in ref. 7 that, in general, noninteracting systems of 
bosons display two types of condensation: condensation in the ground 
state and condensation in several (possibly infinite) low-lying energy levels 
(generalized condensation). Some of these models have two critical tem- 
peratures: Tc and l'c ( < Tc). Above Tc there is no condensation. Generalized 
condensation takes place in the temperature interval [To; Tc]. Below Tc 
both types of condensation are present. 

As confirmation of the above-mentioned connection between the 
spherical model and the free boson gas, similar condensation phenomena 
have been shown to exist in the spherical model. In a recent paper (14) 
both types of condensation were observed. Using the "condensation" 
terminology from ref. 14, one can interpret the critical temperatures T c 
and ]'c found in the present paper as indicating an onset of generalized 
condensation and condensation in the "ground state," respectively. 

Several natural questions arise in connection with the results obtained 
in this paper. Does the presence of appropriate boundary conditions 
also produce the second phase transition, i.e., the freezing of the order 
parameter and magnetization profile ? Does the same phase transition exist 
in more realistic models, for instance, in the generalized spherical 
model(19)? 

A P P E N D I X A .  F O R M U L A  FOR THE C O E F F I C I E N T S  a t 

The following formula for the coefficients a t defined by (2.8) holds true 

(2x/~[-. sin[27r(l-1)/U] 3 
~ - - ~ 1  L 1-4 1 ~ - - - - ~ X ] J  

a t = ]  if l=l+(2m-1)N/nl ,  m=l, 2,...,nl/2 (A.1) 

~,0 otherwise 

We start from the expression 

v (l) g (z) 
0~1~" -- j+nl(k--1)--  2 j+nl(k--l)  

j= hi~2 + 1 
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which is a direct consequence of the definition of the coefficients e, and the 
specific form of the external field h = {hi}N= 1. Using the explicit form of the 
eigenvectors V (t) = { V~t)} N.=~ of the interaction matrix C• given in (2.5), we 
have 

j+~,(k_ 1) -  x/- ~ cos [j-l+(k-1)nl](l-1) 

+sin{2--~ [j-l+(k-1)nl](l- t)})  

As a direct consequence of the formula for the sum of a geometrical 
progression, one obtains 

E , =  ~ - exp i-~[j-l+(k-1)nl](1-1) 
k ~ l  j = n l / 2 + l  

! 4 if l = l + ( 2 m  1)N/n 1, re=l, 2 ..... nl/2 
= 1 1 - e x p [ i 2 ~ ( / - -  1)/4] 

otherwise 

Because of ~zt=(1/x/N)[Re(Et)+Im(Et) ] we arrive at the following 
expression for the coefficients ez: 

2 x/-N I sin[Zzr(/- 1}/N] 1 
a t=  1+  

nl 1 - - ~ -  1)/N]_] 

if l =  1 + (2m - 1)N/n1 for some m = 1, 2 ..... nl/2 and zero otherwise, which 
coincides with (A.1). 

A P P E N D I X  B. S O M E  USEFUL S U M S  

In this appendix we derive expressions for two sums which were used 
for the derivation of Eqs. (3.4), (4.4), (4.5), and (4.7). 

The formula (3.4) for the field-induced term follows immediately if we 
can prove that 

I n/2[m~ = l q -  sin(2~/n)(2m--1) ]2 1 
S - - ~  =1 l ~ m  1) z-d+l-cos(2=/n)(2m-1) 

, 1 

- z -dL4 n[(z-d+l) 2 -  1] 1/2x~/2+ 
(B.1) 

where x2=z-d+ 1 + [ ( z - d +  1) 2 -  1] 1/2 and we suppose that n is even. 
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We start from the identity 

1 

z - d +  1 - c o s [ 2 ~ ( 2 m -  1)/n] 

2 { x2 
X 2 - -  X 1 X 2 -- exp [2rci(2m - 

xl } 

1 ) / n  ] + exp [ 2~ i(2m -- 1 ) /n  ] - x 1 

w h e r e  X l , 2 = z - d +  l T [ ( z -  d +  1)  2 -  1"] 1/2. 

The following formula will also prove useful: 

(B.2) 

To obtain it, let us notice that  the expressions on the left- and right-hand 
sides of this formula are analytic functions of x (on the whole complex 
plane of the variable x except for n / 2  poles on the unit circle), so it is 
sufficient to prove it, say, for all real x satisfying Ix] > 1 and the rest follows 
by analytic continuation.  Suppose that  Ixl > 1; then, using the formula for 
the sum of a geometrical  series, one can rewrite S as 

S = - Y, x -k  exp 
X m = l  k>~O 

Performing the summat ion  over index m first, one gets 

1 exp = 
m = l  

which yields 

{~ -- 1)" n / 2  if k = r n / 2 ,  r = O, 1, 2,... 

otherwise 

1l 
oo xn /2  n y~ ) . . . .  /2 _ 

S = T x  ( -  ~ - - - -  r = 0 X - -  2 1 + X n/2 

and (B.3) is proven. In t roducing the variable y = x -1 ,  one can rewrite (B.3) 
a s  

n/2 1 n 1 

1 -- y exp[2~ i (2m--  1)/n] 2 1 + yn/2  (B.4) m = l  

Differentiating (B.4) over y and passing to the limit y ~ i, one obtains 

n/2 exp [ - i 2~ (2m-  1)/n] n 2 
~ 1  { e x ~ - - - i ] / - n ] - - ~ l  } 2=  -1--6 (B.5) 

n/2 1 El X n/2 -- i 

S--= Y' exp [2 rc i (2m-  1)/n] 2 l + x  "/2 (B.3) m = l  x -  
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Expanding the square in the lhs of (B.1), one can split the sum 22 into 
three parts 221,222, and 223. 

~/2 1 
1. s 

= 1 z -- d+ 1 - cos(2rc/n)(2m - 1 ) 

To calculate this sum, one needs to make use of formula (B.2) and then of 
(B.3). One obtains 

$1 x2--exp[27zi(2m-- 1)/n] + expL2~it2m-- 1)/n] - -x ,  X2 - -  X l  rn=l 

_ ( xT/  ) 
X 2 X 1 ~ 1 "q'- X~/2 1 "q- XT/2J  

,,/2 sin(27r/n)(2m- 1) 1 
2. $2=-- ~ 1 -cos (2r t /n ) (2m-  1 ) z - d +  1-cos(2r~/n)(2m- 1) m=l 

This sum is identically zero. To prove it, let us notice first of all that 

in~2 exp[(2rci/n)(2m-1)] 1 ] 
222 = Im - ~ 1  l ~ ~ - - i ) z - d +  1 -cos(Zrc/n)(2m- 1) (B.6) 

but the sum on the right-hand side of (B.6) is a real-valued function (for 
any real z t> d) because it can be reexpressed as 

6 cos [(2rt/n)(2m - 1 )] +2 
2 ( z -  d +  2) 1~m<,,/4 1 -cos(2rc/n)(2m- 1) 

1 
X 

z - d+ 1 - cos(2rc/n)(2m - 1) 

where 6 = 1 if n/2 is odd and 6 = 0 if n/2 is even. 

. 
n/2 I sin(2rc/n)(2m- ~) ]2 1 

X 3 -  ~ 1-cos(2rc/n)(2m 1) z - d +  1-cos(2rc/n)(2m-  1) m=l 

To calculate this sum, one can use formula 
elementary identities. One obtains 

2 ~ Fexp[i2rc(2m-1) /n]+~]2 
~ ' 3 - -  - -  x2 Xlm=X [_expl-i27r(2m 1 ) / n ] -  

(B.2) together with some 

I X2 Xl t • 
x2-exp[i2r t (2m 1)/n] + - Xl - exp[i2--~-(2m - 1)/n] 

(B.7) 
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Now one can use the identity 

( a +  1) 2 4x a 4 1 (Xq- 1) 2 1 
( a - l )  2 ( x - a ) - ( x - 1 )  2 ( a - l )  2 ( x - l )  2 ( a - 1 )  2 + ( x - l )  ~ ( x - a )  

to represent formula (B.7) as a sum of simple fractions, and after some 
algebra one obtains 

I Xl X2 1 
X3=8 ( x 2 - 1 ) ( x , - l )  2 + ( x , - 1 ) ( x 2 - 1 )  2 

n/2 exp[i2~(2m- 1)/n] 

• E { e x ~ - - i i ) - n - ] - -  1} 2 m=l 

2 [ ( x , + l )  2 ~72 
+ q5 ~ x~ 

x2--Xl [_(xl 1) m=l xl--exp[-i2~c(2rn-- 1)/n] 

(x2 + 1)2 ,72 x2 ] 

-- ~ ~ --exp[i2~(2m 1)/n-] (x 2 1 ) m = 1 X2 3 

Using (B.3) and (B.5), one arrives at the following expression for X3: 

Ex x ] 
$3  = 2 ( x 2 -  1)(x ,  - 1) + 

n F(x l+ l )2  x;/2 (x2+l )  2 x~/2 ] 

x2-x , l (Xl  1)21+x~/2 (x2 1)21+x~/2_] 

Consequently, taking into account definition of x,.2, one obtains 

[ x2 x J2 X l x; 2 ] 
n 2 4 n  (x2---1) 2 1 +x'~/2 (x,---l) 2 1 +x~/2j X,+X 3-4(z_d) x2-x, 

from which the formula (B.I) follows. 
Using the same technique, the following summation can be performed: 

(sj>. (z) - n m~__ ,= COS 2~ (2rn - - n  1)(j-- i) + sin - -  (2m - - n  l)(j--I) 

[ sin(2n/n)(2m-1) } 1 
• l+l-cos(2rt/n)(2m 1 i z-d+l-cos(2rc/n)(2m-1) 

(B.8) 
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Obviously, <Sj+n>n (Z)= <Sj>n (Z), SO it is sufficient to present the result 
just for one row of the lattice, say, for 1 ~ j ~ n ,  

, 1 {1 1 x{ 1 _x~ .~ 
z-T--dki  l + x21+ x~/2 l + xl l + x7/2) 

<S >n (Z)= 

n 
if 1 <~j~<~ 

1 (1 1 x{ -'/2 1 x{ -'/2"] 
z* - ~  \2  1 + x2 1 + x'~/2 1 + x 1 1 + x• n]  

if ; + l ~ j ~ n  

(B.9) 

A P P E N D I X  C. THE C O N V E R G E N C E  RATE OF S O M E  S U M S  

In this appendix the rate of convergence of the sums 

_ !  (d) l N l o g (  z 2~j ) 

log 

for z > d 

(C.1) 

toward their limiting values (when N ~ oo) will be estimated. 
One can easily calculate these sums exactly for d = 1 using the technique 

of Appendix B. In this case 2].1)=2 cos(2n/N)( j -1)  and one can rewrite 
the argument of the logarithm in (C.1) as 

x{,-zlexpli ,j-x,]} 
w h e r e  z1, 2 = z ~- ( z  2 - 1 )1/2. Hence, 

+ Nj--~I log - Zl exp 2re 

+ _~j2.= log 1 -- Zl exp i -~- ( j -  1) 
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For zl < 1 (i.e., z > 1) one can use the Taylor expansion of log(1 + x) at the 
point x--O, which yields 

~---j~'l= log 1 - z l e x p  - i - ~ ( j -  1) 

---- -- r = l ~ r j ~  X e x p I _ i _ ~ ( j _ l ) r  

Using the formula 

~ exp - i - ~ ( j - 1 ) r  = 
j = l  

one obtains 

if r = fN  for some integer f 

otherwise 

5= - N ~ (zN)Z= Iog(1-- Z N) 
f>~l Nf 

Consequently, 

j = 1 log z - cos --~ ( j -  1 ) 

= Nlog  z + (z 2 - 1) 1/2 2 +21~ (C.2) 

that is, the sum L~(z) converges toward its limit exponentially fast for any 
z > l .  

An exact formula for/7,~ ) can be derived from (C.2), 

N/~,~ ~= ~ l ~ 1 7 6  
m=2 

N 2g 

= (1 -- N) log 2 + 2 log N 

Thus, when N ~  oo the convergence rate of the sum L,~) toward its limiting 
value is O(N- 1 log N). 

Now we shall apply the d =  1 results to obtain estimates for the con- 
vergence rates of the sums (C.1) for d > 2 .  The results are the same as for 
d =  1, i.e., for any z > d the sum L(ua)(z) converges toward its limit exponen- 
tially fast, and the convergence rate for the sum/~,~) is O(N- ~ log N). For 

822/72/3-4-19 
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the sake of notational simplicity we shall present a derivation only for the 
case d = 3. Generalization to other dimensions is straightforward. 

For d =  3 one has 

NL~)( z ) :  Z log z -  2~ a) 
j = l  

log Zm, t-- C O S -  
= l - 1  1 k = l  N 

x [ -m-  1 + ( l -  1)n3+ ( k -  1)n2n3] ~ 
) 

where 

2zn 1 2zm 1 F/2 
Zrn ,  l = Z - -  COS ~ [-m - -  1 + ( l -  1 )n33 - c o s  - - - - 7 -  (m - 1) 

does not depend on k. One can perform summation over k repeating (and 
slightly modifying) our calculations for the case d =  1, which yields 
[cf. (C.2)] 

1 ( + )  N L ~ ( z )  = y~ n~ log[sZm, l ] + A~ 
/, m 

where 

2rcnl ~,/.j j (C.3) A 1 = ~ log 1 -2[z(<,~] ~ cos---~- Ira-- 1 + n3( l -  1)] + [z (-)12~'~ 
l , m  

and 7( ++- ) -- Zm. l q7 2 ~m,l - -  (Zm, l -  1) ~/2. Note now the identity 

1 (,2re 1 1/2] 
--t2rc Jo doJ, l o g ( z - c o s  ml) = log ~ [ z +  (z 2 -  1) 

which can be obtained, for instance, from formula (C.2) by passing to the 
limit N ~ oo. Hence 

NL(Na'(z) f~ ~dc0l l~ I z -  c~ N 
= ~  ~m.l 2Tcnln2(m-- l ) 

2rcnl[m-- l+( l - -1)n3]  cos col] + AI -- cos N 
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One can consecut ively per form the summat ions  over  l and  m under  the 
in tegral  exact ly  as has been done  over  k. One  ob ta ins  

fff~ dcol dco2 dco3 L~(z) (2~) 3 log(z - cos co 1 - cos co 2 - cos ~3)  

zJ1 + A z - + - A  3 
4 

N 

where 

1 
"--" 3 dco~log 1 + 2 [ z ~ - ) ( ~ o l ) ]  < 

3 2 = ~ m = ,  0 

Z~-->(~)  Zm(O)  2 ]~/~ = - E z m ( ~ o ) -  1 

2xnln2(m- 1) 
zm(~o) = z --  cos cos co 

N 

z J 3 = 2 g 2 j j  ~ do~l dco210g{1 + [z  / ) ( ~ 1 ; ~ 2 ) ]  "3} 

z ~ - ) ( ~  ~ ; ~ 2 )  : z(~o~ ; co2) - [ z 2 ( ~ ,  ; co=) - t ] ' / 2  

z(c01 ; 0~2) = z - c o s  co1 - c o s  (o2 

If z > 3, then z ~ )  < z - 2 - [ (z  - 2 )  2 - -  1] 1/2 < 1 and  hence 

[At[ <.2nen3{z--2-- [ ( Z - - 2 )  2 -  1 ]1 /2}  nl 

+n2n3{z-2- [ ( z -  2) 2 -  111/2} 2hI 

This means  that  when N ~  ~ the term A~ tends to zero as o(exp(-N~/37) ) 
for some ~, > 0. One can es t imate  A2 and  33 in a s imilar  way  and ob ta in  
finally 

f2 L~)(z) =7"gZ~_~3 dcol d~ &~ 

• l o g ( z -  cos ~nl - - c o s  ~o~ - c o s  c~3) + o ( e x p ( -  N 1/3y)) 

for some y = 7(z) > 0 when z > 3. 
Let  now z = 3. A s  in the case d =  1, one can use the ident i ty  

[ l ~  3) 1 L(N 3} = lira L~}(z) 
zJ, 3 
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It is clear that, say, for 1N1/3~ l, m ~ ~N 1/3 the corresponding terms in the 
sum (C.3) are exponentially small and one can forget about  them, as we 
are looking for an O ( N  -1 log(N))  estimate. One can use the inequality 
cos(2rcx)~< 1 -  18x a if 0~<x~<~ to estimate z(,~l ) when rn, l < ~ N  1/3 and a 
similar inequality for m, l > SN1/3. This yields 

lim ( - ( - ) ~ N ~ / 3 < . e x p { - 6 [ ( l - 1 ) 2 + ( m - 1 ) 2 1 1 / 2 }  (C.4) 

for any finite I ( >  1) and rn ( >  1). It is clear now that one can find a 
constant  C1 such that  for t, rn e [C1 tog N;  N ~/3- C~ log N ]  one has 

m a x  l _ - m , l  _1 
C1 log N ~ l, rn <. N 1/3 - -  C 1 log N 

Using (C.4), one concludes that  all terms in the sum (C.3) remain 
uniformly bounded  over m , l > O  as N ~ o e .  Hence the sum (C.3) is 
hounded  above  by C(log N) 2 as N--* oo (which is already sufficient for the 
validity of all the results of this paper)  and more  careful estimates show 
that  A1 = O(log N). Similar arguments  can be applied for the estimation of 
Z~ 2 and A 3 and we obtain finally A 1 + A 2 - t - z ~  3 = O(log N) as N ~  oe. 
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